ENBIS-16 in Sheffield

11 – 15 September 2016; Sheffield Abstract submission: 20 March – 4 July 2016

Disaggregated Electricity Forecasting using Wavelet-Based Clustering of Individual Consumers

13 September 2016, 15:10 – 15:30


Submitted by
Jean-Michel Poggi
Jean-Michel Poggi (University of Paris Sud - Orsay), Jairo Cugliari (Univ. Lyon 2), Yannig Goude (EDF R&D, Paris Saclay)
Electricity load forecasting is crucial for utilities for production planning as well as marketing offers. Recently, the increasing deployment of smart grids infrastructure requires the development of more flexible data driven forecasting methods adapting quite automatically to new data sets.

We propose to build clustering tools useful for forecasting the load
consumption. The idea is to disaggregate the global signal in such a way that
the sum of disaggregated forecasts significantly improves the prediction of the whole global signal. The strategy is in three steps: first we cluster curves
defining super-consumers, then we build a hierarchy of partitions within which the best one is finally selected with respect to a disaggregated forecast criterion.

The proposed strategy is applied to a dataset of individual consumers from the French electricity provider EDF. A substantial gain of 16% in forecast accuracy comparing to the 1 cluster approach is provided by disaggregation while preserving meaningful classes of consumers.
View paper

Return to programme